Discontinuity of primary and secondary neural tube in spina bifida induced by retinoic acid in mice

This report shows by light microscopy the appearance of secondary neurulation separated from primary neurulation and its developmental fate in the spinal cord of mice exposed to retinoic acid in utero. The embryos and fetuses were derived from pregnant mice (ICR strain) given 60, 40, or 0 mg/kg of r...

Full description

Saved in:
Bibliographic Details
Published in:Teratology (Philadelphia) Vol. 41; no. 3; p. 257
Main Authors: Yasuda, Y, Konishi, H, Kihara, T, Tanimura, T
Format: Journal Article
Language:English
Published: United States 01-03-1990
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This report shows by light microscopy the appearance of secondary neurulation separated from primary neurulation and its developmental fate in the spinal cord of mice exposed to retinoic acid in utero. The embryos and fetuses were derived from pregnant mice (ICR strain) given 60, 40, or 0 mg/kg of retinoic acid in olive oil on day 8 of gestation orally and killed 1, 2, or 10 days later. Separation of the primary neural fold from the secondary neural tube was seen in 9- and 10-day-old embryos: the caudal part of the neuroepithelium of the primary neural fold was disarranged with non-closed posterior neuropore, and underneath it the secondary neural tissue extended caudally with abnormal notochord. At term, fetuses showed spina bifida, including myeloschisis, myelocele, and diplomyelia (diastematomyelia) with abnormal distribution of ganglionic cells. These cord lesions were located between the third lumbar and second coccygeal levels. The former two cord anomalies were associated with diplomyelia and split the dorsal and ventral portions of the spinal cord with an overlapping zone between the third lumbar and third sacral levels. These findings suggest that the separation from primary neurulation is due to the lesions in both primary neural folds and notochord induced by retinoic acid and that the spinal cord caudal to the third lumbar level originates from both neuroectoderm and mesenchyme-like cells while that caudal to the third sacral level originates from mesenchyme-like cells only.
ISSN:0040-3709
DOI:10.1002/tera.1420410303