VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor
Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3 O4 ) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to for...
Saved in:
Published in: | Nanomedicine Vol. 11; no. 4; pp. 825 - 833 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-05-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3 O4 ) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53 ± 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro ; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. From the Clinical Editor This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. |
---|---|
ISSN: | 1549-9634 1549-9642 |
DOI: | 10.1016/j.nano.2014.12.011 |