Genetic engineering of peppermint for improved essential oil composition and yield
The biochemistry, organization, and regulation of essential oil metabolism in the epidermal oil glands of peppermint have been defined, and most of the genes encoding enzymes of the eight-step pathway to the principal monoterpene component (-)-menthol have been isolated. Using these tools for pathwa...
Saved in:
Published in: | Transgenic research Vol. 14; no. 4; pp. 365 - 372 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer
01-08-2005
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The biochemistry, organization, and regulation of essential oil metabolism in the epidermal oil glands of peppermint have been defined, and most of the genes encoding enzymes of the eight-step pathway to the principal monoterpene component (-)-menthol have been isolated. Using these tools for pathway engineering, two genes and two expression strategies have been employed to create transgenic peppermint plants with improved oil composition and yield. These experiments, along with related studies on other pathway genes, have led to a systematic, stepwise approach for the creation of a 'super' peppermint. |
---|---|
Bibliography: | http://www.kluweronline.com/issn/0962-8819/contents ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0962-8819 1573-9368 |
DOI: | 10.1007/s11248-005-5475-2 |