Ten Fast Transfer Learning Models for Carotid Ultrasound Plaque Tissue Characterization in Augmentation Framework Embedded with Heatmaps for Stroke Risk Stratification

Background and Purpose: Only 1–2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earl...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) Vol. 11; no. 11; p. 2109
Main Authors: Sanagala, Skandha S., Nicolaides, Andrew, Gupta, Suneet K., Koppula, Vijaya K., Saba, Luca, Agarwal, Sushant, Johri, Amer M., Kalra, Manudeep S., Suri, Jasjit S.
Format: Journal Article
Language:English
Published: Basel MDPI AG 15-11-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background and Purpose: Only 1–2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earlier plaque tissue characterization (PTC) methods were machine learning (ML)-based, which used hand-crafted features that yielded lower accuracy and unreliability. The proposed study shows the role of transfer learning (TL)-based deep learning models for PTC. Methods: As pertained weights were used in the supercomputer framework, we hypothesize that transfer learning (TL) provides improved performance compared with deep learning. We applied 11 kinds of artificial intelligence (AI) models, 10 of them were augmented and optimized using TL approaches—a class of Atheromatic™ 2.0 TL (AtheroPoint™, Roseville, CA, USA) that consisted of (i–ii) Visual Geometric Group-16, 19 (VGG16, 19); (iii) Inception V3 (IV3); (iv–v) DenseNet121, 169; (vi) XceptionNet; (vii) ResNet50; (viii) MobileNet; (ix) AlexNet; (x) SqueezeNet; and one DL-based (xi) SuriNet-derived from UNet. We benchmark 11 AI models against our earlier deep convolutional neural network (DCNN) model. Results: The best performing TL was MobileNet, with accuracy and area-under-the-curve (AUC) pairs of 96.10 ± 3% and 0.961 (p < 0.0001), respectively. In DL, DCNN was comparable to SuriNet, with an accuracy of 95.66% and 92.7 ± 5.66%, and an AUC of 0.956 (p < 0.0001) and 0.927 (p < 0.0001), respectively. We validated the performance of the AI architectures with established biomarkers such as greyscale median (GSM), fractal dimension (FD), higher-order spectra (HOS), and visual heatmaps. We benchmarked against previously developed Atheromatic™ 1.0 ML and showed an improvement of 12.9%. Conclusions: TL is a powerful AI tool for PTC into symptomatic and asymptomatic plaques.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics11112109