Sialidase NEU3 is a peripheral membrane protein localized on the cell surface and in endosomal structures
Sialidase NEU3 is also known as the plasma-membrane-associated form of mammalian sialidases, exhibiting a high substrate specificity towards gangliosides. In this respect, sialidase NEU3 modulates cell-surface biological events and plays a pivotal role in different cellular processes, including cell...
Saved in:
Published in: | Biochemical journal Vol. 408; no. 2; pp. 211 - 219 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Portland Press
01-12-2007
Portland Press Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sialidase NEU3 is also known as the plasma-membrane-associated form of mammalian sialidases, exhibiting a high substrate specificity towards gangliosides. In this respect, sialidase NEU3 modulates cell-surface biological events and plays a pivotal role in different cellular processes, including cell adhesion, recognition and differentiation. At the moment, no detailed studies concerning the subcellular localization of NEU3 are available, and the mechanism of its association with cellular membranes is still unknown. In the present study, we have demonstrated that sialidase NEU3, besides its localization at the plasma membrane, is present in intracellular structures at least partially represented by a subset of the endosomal compartment. Moreover, we have shown that NEU3 present at the plasma membrane is internalized and locates then to the recycling endosomal compartment. The enzyme is associated with the outer leaflet of the plasma membrane, as shown by selective cell-surface protein biotinylation. This evidence is in agreement with the ability of NEU3 to degrade gangliosides inserted into the plasma membrane of adjacent cells. Moreover, the mechanism of the protein association with the lipid bilayer was elucidated by carbonate extraction. Under these experimental conditions, we have succeeded in solubilizing NEU3, thus demonstrating that the enzyme is a peripheral membrane protein. In addition, Triton X-114 phase separation demonstrates further the hydrophilic nature of the protein. Overall, these results provide important information about the biology of NEU3, the most studied member of the mammalian sialidase family. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj20070503 |