Differential microRNA expression in the peripheral blood from human patients with COVID‐19

Introduction The coronavirus disease (COVID‐19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which play important roles in regulating gene expression and are also considered as essential modulators during viral infection. The aim of this study was to elucidate the diffe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical laboratory analysis Vol. 34; no. 10; pp. e23590 - n/a
Main Authors: Li, Caixia, Hu, Xiao, Li, Leilei, Li, Jin‐hui
Format: Journal Article
Language:English
Published: United States John Wiley & Sons, Inc 01-10-2020
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction The coronavirus disease (COVID‐19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which play important roles in regulating gene expression and are also considered as essential modulators during viral infection. The aim of this study was to elucidate the differential expression of miRNAs in COVID‐19. Methods The total RNA was extracted and purified from the peripheral blood of ten patients with COVID‐19 and four healthy donors. The expression levels of various miRNAs were detected by high‐throughput sequencing, and correlation analysis was performed on the target genes that are primed by miRNAs. Key findings Compared with the healthy controls, 35 miRNAs were upregulated and 38 miRNAs were downregulated in the human patients with COVID‐19. The top 10 genes were listed below: hsa‐miR‐16‐2‐3P,hsa‐miR‐5695,hsa‐miR‐10399‐3P,hsa‐miR‐6501‐5P,hsa‐miR‐361‐3P,hsa‐miR‐361‐3p, hsa‐miR‐4659a‐3p, hsa‐miR‐142‐5p, hsa‐miR‐4685‐3p, hsa‐miR‐454‐5p, and hsa‐miR‐30c‐5p. The 10 genes with the greatest reduction were listed below: hsa‐miR‐183‐5p, hsa‐miR‐627‐5p, hsa‐miR‐941, hsa‐miR‐21‐5p, hsa‐miR‐20a‐5p, hsa‐miR‐146b‐5p, hsa‐miR‐454‐3p, hsa‐miR‐18a‐5p, hsa‐miR‐340‐5p, and hsa‐miR‐17‐5p. Remarkably, miR‐16‐2‐3p was the most upregulated miRNA, with a 1.6‐fold change compared to that of the controls. Moreover, the expression of miR‐6501‐5p and miR‐618 was 1.5‐fold higher in the COVID‐19 patients than in the healthy donors. Meanwhile, miR‐627‐5p was the most downregulated miRNA, with a 2.3‐fold change compared to that of the controls. The expression of other miRNAs (miR‐183‐5p, miR‐627‐5p, and miR‐144‐3p) was reduced by more than 1.3‐fold compared to that of the healthy donors. Cluster analysis revealed that all of the differentially expressed miRNA target genes were clustered by their regulation of cellular components, molecular functions, and biological processes. Importantly, peptidases, protein kinases, and the ubiquitin system were shown to be the highest enrichment categories by enrichment analysis. Conclusions The differential miRNA expression found in COVID‐19 patients may regulate the immune responses and viral replication during viral infection. Extract periperal blood cells from COVID‐19 patients, and micRNAs were detected by high‐throughput sequencing using illumina HiseqX Ten machine to fint the differential expression of miRNAs in COVID‐19.
Bibliography:Funding information
Caixia Li and Xiao Hu contributed to this work equally.
This study was supported by the Jinhua Science and Technology Bureau new Crown research key project in Zhejiang Province, China (2020XG‐30).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-8013
1098-2825
DOI:10.1002/jcla.23590