Influence of kinematic alignment on femorotibial kinematics in medial stabilized TKA design compared to mechanical alignment
Introduction Worldwide more and more primary knee replacements are being performed. Kinematic alignment (KA) as one of many methods of surgical alignment has been shown to have a significant impact on kinematics and function. The aim of the present study was to compare KA and mechanical alignment (M...
Saved in:
Published in: | Archives of orthopaedic and trauma surgery Vol. 143; no. 7; pp. 4339 - 4347 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-07-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction
Worldwide more and more primary knee replacements are being performed. Kinematic alignment (KA) as one of many methods of surgical alignment has been shown to have a significant impact on kinematics and function. The aim of the present study was to compare KA and mechanical alignment (MA) with regard to femorotibial kinematics.
Materials and methods
Eight fresh frozen human specimens were tested on a knee rig during active knee flexion from 30 to 130°. Within the same specimen a medial stabilized (MS) implant design was used first with KA and then with MA.
Results
The femorotibial kinematics showed more internal rotation of the tibia in KA compared to MA. At the same time, there was a larger medial rotation point in KA. Both alignment methods showed femoral rollback over the knee bend.
Conclusion
Relating to an increased internal rotation and a more precise medial pivot point, it can be concluded that KA combined with a MS implant design may partially support the reproduction of physiological knee joint mechanics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1434-3916 0936-8051 1434-3916 |
DOI: | 10.1007/s00402-022-04661-5 |