Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications
Graphene has unique properties which make it an ideal material for photonic and optoelectronic devices. However, the low light absorption in monolayer graphene seriously limits its practical applications. In order to greatly enhance the light absorption of graphene, many graphene-based structures ha...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Vol. 8; no. 12; p. 1033 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
12-12-2018
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene has unique properties which make it an ideal material for photonic and optoelectronic devices. However, the low light absorption in monolayer graphene seriously limits its practical applications. In order to greatly enhance the light absorption of graphene, many graphene-based structures have been developed to achieve perfect absorption of incident waves. In this review, we discuss and analyze various types of graphene-based perfect absorption structures in the visible to terahertz band. In particular, we review recent advances and optoelectronic applications of such structures. Indeed, the graphene-based perfect absorption structures offer the promise of solving the key problem which limits the applications of graphene in practical optoelectronic devices. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/NANO8121033 |