Thermal transport across membranes and the Kapitza length from photothermal microscopy

An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remark...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biological physics Vol. 49; no. 3; pp. 365 - 381
Main Authors: Samolis, Panagis D., Sander, Michelle Y., Hong, Mi K., Erramilli, Shyamsunder, Narayan, Onuttom
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-09-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remarkably high contrast and resolution, but also are capable of providing label-free local information of heat transport in complex morphologies. In the first Born approximation, the derived Green’s function leads to the reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase detection of periodic excitations. We show that important fundamental parameters including the Kapitza length and Kapitza resistance can be derived from experiments. Our goal is to spur additional experimental studies with high-frequency modulation and heterodyne detection in order to make contact with recent theoretical molecular dynamics calculations of thermal transport properties in membrane systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0092-0606
1573-0689
1573-0689
DOI:10.1007/s10867-023-09636-0