Postsynthetic acetylation of histones during the cell cycle: a general function for the displacement of histones during chromatin rearrangements

Postsynthetic acetylation of core histones exhibits a peak during S-phase of the Physarum cell cycle. The maximum 3H-acetate incorporation precedes the maximum of histone synthesis. Acetate is incorporated into all core histones during S-phase, but only into H2A and H2B during G2-period. Resolution...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 15; no. 20; pp. 8351 - 8366
Main Authors: LOIDL, P, GRÖBNER, P
Format: Journal Article
Language:English
Published: Oxford Oxford University Press 26-10-1987
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Postsynthetic acetylation of core histones exhibits a peak during S-phase of the Physarum cell cycle. The maximum 3H-acetate incorporation precedes the maximum of histone synthesis. Acetate is incorporated into all core histones during S-phase, but only into H2A and H2B during G2-period. Resolution of acetylated H4-subspecies reveals acetate incorporation into preexisting H4, but not into newly synthesized molecules during mitosis and early S-phase. In a protamine competition assay histones from S-phase chromatin are released at lower protamine concentrations as compared to the lower acetylated G2-chromatin. We demonstrate a preferential release of highly acetylated H4-subspecies at low protamine concentrations. Our results fit into a general model of the relationship between histone acetylation and chromatin assembly. According to this model acetylation of core histones would serve as a signal for displacement of histones from nucleosomes by modulating histone-protein or histone-DNA interactions. We propose that this mechanism operates during DNA-replication and transcription, as well as during other chromatin rearrangements.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/15.20.8351