A mathematical framework for analysing particle flow in a network with multiple pools

In many real-world systems, the entry rate of particles into a lane is affected by the occupancy of nearby pools. For instance, in biological networks, the concentration of molecules on the side of a membrane affects the entry of particles through the membrane. To understand the behaviour of such ne...

Full description

Saved in:
Bibliographic Details
Published in:Royal Society open science Vol. 11; no. 5; pp. 231588 - 23
Main Authors: Jain, Aditi, Gupta, Arvind Kumar
Format: Journal Article
Language:English
Published: England The Royal Society Publishing 01-05-2024
The Royal Society
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In many real-world systems, the entry rate of particles into a lane is affected by the occupancy of nearby pools. For instance, in biological networks, the concentration of molecules on the side of a membrane affects the entry of particles through the membrane. To understand the behaviour of such networks, we develop a network model of ribosome flow models (RFMs) having multiple pools where each RFM captures the dynamics of particle flow in a lane and competes for the finite resources present at the nearby pool. We study a ribosome flow model network with two pools (RFMNTP) and show that the network always admits a steady state. We then analyse the behaviour of the RFMNTP with respect to modifying the transition rate through a theoretical framework. Simulations of the RFMNTP demonstrate a counterintuitive result. For example, increasing any of the transition rates in the presence of a slow site in an RFM can increase the output rate of some RFMs and decrease the output rate of the other RFMs simultaneously. This suggests that the role of local sharing of particles incorporated is non-trivial. Finally, we illustrate how these results can provide insights into studying a network with multiple pools.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.231588