Machine Learning Applications in Drug Repurposing

The coronavirus disease (COVID-19) has led to an rush to repurpose existing drugs, although the underlying evidence base is of variable quality. Drug repurposing is a technique by taking advantage of existing known drugs or drug combinations to be explored in an unexpected medical scenario. Drug rep...

Full description

Saved in:
Bibliographic Details
Published in:Interdisciplinary sciences : computational life sciences Vol. 14; no. 1; pp. 15 - 21
Main Authors: Yang, Fan, Zhang, Qi, Ji, Xiaokang, Zhang, Yanchun, Li, Wentao, Peng, Shaoliang, Xue, Fuzhong
Format: Journal Article
Language:English
Published: Singapore Springer Singapore 01-03-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The coronavirus disease (COVID-19) has led to an rush to repurpose existing drugs, although the underlying evidence base is of variable quality. Drug repurposing is a technique by taking advantage of existing known drugs or drug combinations to be explored in an unexpected medical scenario. Drug repurposing, hence, plays a vital role in accelerating the pre-clinical process of designing novel drugs by saving time and cost compared to the traditional de novo drug discovery processes. Since drug repurposing depends on massive observed data from existing drugs and diseases, the tremendous growth of publicly available large-scale machine learning methods supplies the state-of-the-art application of data science to signaling disease, medicine, therapeutics, and identifying targets with the least error. In this article, we introduce guidelines on strategies and options of utilizing machine learning approaches for accelerating drug repurposing. We discuss how to employ machine learning methods in studying precision medicine, and as an instance, how machine learning approaches can accelerate COVID-19 drug repurposing by developing Chinese traditional medicine therapy. This article provides a strong reasonableness for employing machine learning methods for drug repurposing, including during fighting for COVID-19 pandemic.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1913-2751
1867-1462
DOI:10.1007/s12539-021-00487-8