Ectomycorrhizal Networks of Pseudotsuga menziesii var. glauca Trees Facilitate Establishment of Conspecific Seedlings Under Drought

Ectomycorrhizal (EM) networks are hypothesized to facilitate regeneration under abiotic stress. We tested the role of networks in interactions between P. menziesii var. glauca trees and conspecific seedlings along a climatic moisture gradient to: (1) determine the effects of climatic factors on netw...

Full description

Saved in:
Bibliographic Details
Published in:Ecosystems (New York) Vol. 15; no. 2; pp. 188 - 199
Main Authors: Bingham, Marcus A., Simard, Suzanne
Format: Journal Article
Language:English
Published: New York Springer Science+Business Media 01-03-2012
Springer-Verlag
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ectomycorrhizal (EM) networks are hypothesized to facilitate regeneration under abiotic stress. We tested the role of networks in interactions between P. menziesii var. glauca trees and conspecific seedlings along a climatic moisture gradient to: (1) determine the effects of climatic factors on network facilitation of Pseudotsuga menziesii (Mirb.) Franco var. glauca (Mayr) seedling establishment, (2) infer the changing importance of P. menziesii var. glauca parent trees in conspecific regeneration with climate, and (3) parse the competitive from facultative effects of P. menziesii var. glauca trees on seedlings. When drought conditions were greatest, seedling growth increased when seedlings could form a network with trees in the absence of root competition, but was reduced when unable to form a network. Survival was maximized when seedlings were able to form a network in the absence of root competition. Seedling stem natural abundance δ¹³C increased with drought due to increasing water use efficiency, but was unaffected by distance from tree or network potential. We conclude that P. menziesii seedlings may benefit from the presence of established P. menziesii trees when growing under climatic drought, but that this benefit is contingent upon the establishment of an EM network prior to the onset of summer drought. These results suggest that networks are an important mechanism for EM plants establishing in a pattern consistent with the stress-gradient hypothesis, and therefore the importance of EM networks to facilitation in regeneration of EM trees is expected to increase with drought.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1432-9840
1435-0629
DOI:10.1007/s10021-011-9502-2