Gasdermin E mediates resistance of pancreatic adenocarcinoma to enzymatic digestion through a YBX1–mucin pathway

Pancreatic ductal adenocarcinoma (PDAC) originates from normal pancreatic ducts where digestive juice is regularly produced. It remains unclear how PDAC can escape autodigestion by digestive enzymes. Here we show that human PDAC tumour cells use gasdermin E (GSDME), a pore-forming protein, to mediat...

Full description

Saved in:
Bibliographic Details
Published in:Nature cell biology Vol. 24; no. 3; pp. 364 - 372
Main Authors: Lv, Jiadi, Liu, Yuying, Mo, Siqi, Zhou, Yabo, Chen, Fengye, Cheng, Feiran, Li, Cong, Saimi, Dilizhatai, Liu, Mengyu, Zhang, Huafeng, Tang, Ke, Ma, Jingwei, Wang, Zhenfeng, Zhu, Qiangqiang, Tong, Wei-Min, Huang, Bo
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-03-2022
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pancreatic ductal adenocarcinoma (PDAC) originates from normal pancreatic ducts where digestive juice is regularly produced. It remains unclear how PDAC can escape autodigestion by digestive enzymes. Here we show that human PDAC tumour cells use gasdermin E (GSDME), a pore-forming protein, to mediate digestive resistance. GSDME facilitates the tumour cells to express mucin 1 and mucin 13, which form a barrier to prevent chymotrypsin-mediated destruction. Inoculation of GSDME −/− PDAC cells results in subcutaneous but not orthotopic tumour formation in mice. Inhibition or knockout of mucin 1 or mucin 13 abrogates orthotopic PDAC growth in NOD-SCID mice. Mechanistically, GSDME interacts with and transports YBX1 into the nucleus where YBX1 directly promotes mucin expression. This GSDME–YBX1–mucin axis is also confirmed in patients with PDAC. These findings uncover a unique survival mechanism of PDAC cells in pancreatic microenvironments. Lv et al. reveal a non-canonical role for gasdermin E in protecting pancreatic cancer cells from chymotrypsin-mediated digestion in the microenvironment by promoting the transcription factor YBX1 to induce mucin expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-7392
1476-4679
DOI:10.1038/s41556-022-00857-4