Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution

Bacteria are important components of bioaerosols with the potential to influence human health and atmospheric dynamics. However, information on the concentrations and influencing factors of viable bacteria is poorly understood. In this study, size-segregated bioaerosol samples were collected from Au...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) Vol. 257; p. 113485
Main Authors: Gong, Jing, Qi, Jianhua, E, Beibei, Yin, Yidan, Gao, Dongmei
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-02-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacteria are important components of bioaerosols with the potential to influence human health and atmospheric dynamics. However, information on the concentrations and influencing factors of viable bacteria is poorly understood. In this study, size-segregated bioaerosol samples were collected from Aug. 2017 to Feb. 2018 in the coastal region of Qingdao, China. The total microbes and viable/non-viable bacteria in the samples were measured using an epifluorescence microscope after staining with the DAPI (4′, 6-diamidino-2-phenylindole) and LIVE/DEAD® BacLight™ Bacterial Viability Kit, respectively. The concentrations of non-viable bacteria increased when the air quality index (AQI) increased from <50 to 300, with the proportion of non-viable bacteria to total microbes increasing from (11.1 ± 12.0)% at an AQI of <50 to (18.4 ± 14.7)% at an AQI of >201. However, the concentrations of viable bacteria decreased from (2.12 ± 2.04) × 104 cells·m−3 to (9.00 ± 1.72) × 103 cells·m−3 when the AQI increased from <50 to 150. The ratio of viable bacteria to total bacteria (viability) decreased from (31.0 ± 14.7)% at 0 < AQI<50 to (8.6 ± 1.0)% at 101 < AQI<150 and then increased to (9.6 ± 5.3)% at an AQI of 201–300. The results indicated that the bacterial viability decreased when air pollution occurred and increased again when pollution became severe. The mean size distribution of non-viable bacteria exhibited a bimodal distribution pattern at an AQI<50 with two peaks at 2.1–3.3 μm and >7.0 μm, while the viable bacteria had two peaks at 1.1–2.1 μm and >7 μm. When the AQI increased from 101 to 300, the size distribution of viable/non-viable bacteria varied with an increased proportion of fine particles. The multiple linear regression analysis results verified that the AQI and PM10 had important effects on the concentrations of non-viable bacteria. These results highlight impacts of air pollution on viable/non-viable bacteria and the interactions between complex environmental factors and bacteria interactions, improving our understanding of bioaerosols under air pollution conditions. [Display omitted] •The contribution of non-viable bacteria to total microbes increased with the AQI.•The bacterial viability decreased when air pollution occurred and increased slightly when pollution lasted and became severe.•The proportion of bacteria in fine particles increased greatly on pollution days.•The AQI and PM10 effect the concentrations of non-viable bacteria.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2019.113485