Translational value of animal models of obesity—Focus on dogs and cats

A prolonged imbalance between a relative increase in energy intake over a decrease in energy expenditure results in the development of obesity; extended periods of a positive energy balance eventually lead to the accumulation of abnormally high amounts of fat in adipose tissue but also in other orga...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology Vol. 759; pp. 240 - 252
Main Authors: Osto, Melania, Lutz, Thomas A.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 15-07-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A prolonged imbalance between a relative increase in energy intake over a decrease in energy expenditure results in the development of obesity; extended periods of a positive energy balance eventually lead to the accumulation of abnormally high amounts of fat in adipose tissue but also in other organs. Obesity is considered a clinical state of impaired general heath in which the excessive increase in adipose tissue mass may be associated with metabolic disorders such as type 2 diabetes mellitus, hyperlipidemia, hypertension and cardiovascular diseases. This review discusses briefly the use of animal models for the study of obesity and its comorbidities. Generally, most studies are performed with rodents, such as diet induced obesity and genetic models. Here, we focus specifically on two different species, namely dogs and cats. Obese dogs and cats show many features of human obesity. Interestingly, however, dogs and cats differ from each other in certain aspects because even though obese dogs may become insulin resistant, this does not result in the development of diabetes mellitus. In fact, diabetes in dogs is typically not associated with obesity because dogs present a type 1 diabetes-like syndrome. On the other hand, obese cats often develop diabetes mellitus which shares many features with human type 2 diabetes; feline and human diabetes are similar in respect to their pathophysiology, underlying risk factors and treatment strategies. Our review discusses genetic and endocrine factors in obesity, discusses obesity induced changes in lipid metabolism and includes some recent findings on the role of gut microbiota in obesity. Compared to research in rodent models, the array of available techniques and tools is unfortunately still rather limited in dogs and cats. Hence, even though physiological and pathophysiological phenomena are well described in dogs and cats, the underlying mechanisms are often not known and studies investigating causality specifically are scarce.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2015.03.036