Thermally controllable Mie resonances in a water-based metamaterial
Active control of metamaterial properties is of great significance for designing miniaturized and versatile devices in practical engineering applications. Taking advantage of the highly temperature-dependent permittivity of water, we demonstrate a water-based metamaterial comprising water cubes with...
Saved in:
Published in: | Scientific reports Vol. 9; no. 1; p. 5417 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-04-2019
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Active control of metamaterial properties is of great significance for designing miniaturized and versatile devices in practical engineering applications. Taking advantage of the highly temperature-dependent permittivity of water, we demonstrate a water-based metamaterial comprising water cubes with thermally tunable Mie resonances. The dynamic tunability of the water-based metamaterial was investigated via numerical simulations and experiments. A water cube exhibits both magnetic and electric response in the frequency range of interest. The magnetic response is primarily magnetic dipole resonance, while the electric response is a superposition of electric dipole resonance and a smooth Fabry–Pérot background. Using temporal coupled-mode theory (TCMT), the role of direct scattering is evaluated and the Mie resonance modes are analyzed. As the temperature of water cube varies from 20 °C to 80 °C, the magnetic and electric resonance frequencies exhibit obvious blue shifts of 0.10 and 0.14 GHz, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-41681-5 |