Mapping the world's tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis
A study was performed to characterize over land precipitation associated with tropical cyclones (TCs) for basins around the world based upon the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2009, data from the Tropical Rainfall Measuring Mission (TRMM) Multi‐satel...
Saved in:
Published in: | Water resources research Vol. 49; no. 11; pp. 7236 - 7254 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-11-2013
John Wiley & Sons, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A study was performed to characterize over land precipitation associated with tropical cyclones (TCs) for basins around the world based upon the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2009, data from the Tropical Rainfall Measuring Mission (TRMM) Multi‐satellite Precipitation Analysis (TMPA) product 3B42, showed that TCs accounted for 5.5%, 7.5%, 6%, 9.5%, and 8.9% of the annual precipitation for impacted over land areas of the Americas, East Asia, South and West Asia, Oceania, and East Africa respectively, and that TC contribution decreased significantly within the first 150 km from the coast. Locally, TCs contributed on average to more than 25% and up to 61% of the annual precipitation budget over very different climatic areas with arid or tropical characteristics. East Asia represented the higher and most constant TC rain (118 mm yr−1±19%) normalized over the area impacted, while East Africa presented the highest variability (108 mm yr−1±60%), and the Americas displayed the lowest average TC rain (65 mm yr−1±24%) despite a higher TC activity. Furthermore, the maximum monthly TC contribution (8–11%) was found later in the TC season and depended on the peak of TC activity, TC rainfall, and the domain transition between dry and wet regimes if any. Finally, because of their importance in terms of rainfall amount, the contribution of TCs was provided for a selection of 50 urban areas experiencing cyclonic activity. Results showed that for particularly intense years, urban areas prone to cyclonic activity received more than half of their annual rainfall from TCs.
Key Points
TCs accounted for 5–10% of the annual rainfall over TC basins around the world
EAS represented the higher TC rain, while NCA had the lowest average TC rain
The maximum monthly TC contribution (8–11%) was found later in the TC season |
---|---|
Bibliography: | ark:/67375/WNG-W968VL8V-K istex:603BDFB219D512E004D4250D5C6CDC5E22C3D018 ArticleID:WRCR20527 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0043-1397 1944-7973 |
DOI: | 10.1002/wrcr.20527 |