Relationship between Rate-Limiting Process and Scaling Law in Gel Growth Induced by Liquid-Liquid Contact

Gelation through the liquid-liquid contact between a polymer solution and a gelator solution has been attempted with various combinations of gelator and polymer solutions. In many combinations, the gel growth dynamics is expressed as X∼t, where X is the gel thickness and t is the elapsed time, and t...

Full description

Saved in:
Bibliographic Details
Published in:Gels Vol. 9; no. 5; p. 359
Main Author: Yamamoto, Takao
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 24-04-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gelation through the liquid-liquid contact between a polymer solution and a gelator solution has been attempted with various combinations of gelator and polymer solutions. In many combinations, the gel growth dynamics is expressed as X∼t, where X is the gel thickness and t is the elapsed time, and the scaling law holds for the relationship between X and t. In the blood plasma gelation, however, the crossover of the growth behavior from X∼t in the early stage to X∼t in the late stage was observed. It was found that the crossover behavior is caused by a change in the rate-limiting process of growth from the free-energy-limited process to the diffusion-limited process. How, then, would the crossover phenomenon be described in terms of the scaling law? We found that the scaling law does not hold in the early stage owing to the characteristic length attributable to the free energy difference between the sol-gel phases, but it does in the late stage. We also discussed the analysis method for the crossover in terms of the scaling law.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2310-2861
2310-2861
DOI:10.3390/gels9050359