Bacterial community structures in rhizosphere microsites of ryegrass (Lolium perenne var. Nui) as revealed by pyrosequencing
Management of soils to facilitate plant beneficial microbial interactions requires basic knowledge of the species composition and microbial community structures in the plant rhizosphere. Here, we examined composition of bacterial communities associated with rhizosphere microsites located at the root...
Saved in:
Published in: | Biology and fertility of soils Vol. 50; no. 8; pp. 1253 - 1266 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-11-2014
Springer Berlin Heidelberg Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Management of soils to facilitate plant beneficial microbial interactions requires basic knowledge of the species composition and microbial community structures in the plant rhizosphere. Here, we examined composition of bacterial communities associated with rhizosphere microsites located at the root tips and mature root zones of Lolium perenne when grown in Chilean ash-derived volcanic soils (Andisols: Freire and Piedras Negras soil series). Community structures were analyzed by pyrosequencing of 16S ribosomal RNA (rRNA) genes followed by in silico analysis for phylogenetic assignments (MOTHUR and Visualization tool for Taxonomic Compositions of Microbial Community (VITCOMIC)). Analysis of the community structure revealed significant differences in community structures in relation to the soil series, which differed particularly in the relative abundance of Cyanobacteria and Firmicutes. However, no significant differences were observed with respect to root microsite location in the same Andisol series. Predominant taxa included members of the Proteobacteria, Actinobacteria, and Acidobacteria. Analysis by VITCOMIC showed that dominant bacterial groups comprised only 5 to 10 % of the total bacterial community and the remaining majority of bacteria included low-abundant taxa (Fusobacteria, Thermotogae, Lentisphaerae, Tenericutes, Deferribacteres Spirochaetes, Planctomycetes, Thermotogae, and Deinococcus-Thermus), most of which have not been previously reported or associated with the plant rhizosphere according to GenBank database. The results indicate that most of bacteria in the Chilean Andisols have not been described to the rhizosphere plants and their functional traits are still largely unknown. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s00374-014-0939-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0178-2762 1432-0789 |
DOI: | 10.1007/s00374-014-0939-2 |