Using a testis regeneration model, FGF9, LIF, and SCF improve testis cord formation while RA enhances gonocyte survival

Implantation of testis cell aggregates from various donors under the back skin of recipient mice results in de novo formation of testis tissue. We used this implantation model to study the putative in vivo effects of six different growth factors on testis cord development. Recipient mice ( n  = 7/gr...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue research Vol. 389; no. 2; pp. 351 - 370
Main Authors: Awang-Junaidi, Awang Hazmi, Fayaz, Mohammad Amin, Goldstein, Savannah, Honaramooz, Ali
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-08-2022
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Implantation of testis cell aggregates from various donors under the back skin of recipient mice results in de novo formation of testis tissue. We used this implantation model to study the putative in vivo effects of six different growth factors on testis cord development. Recipient mice ( n  = 7/group) were implanted with eight neonatal porcine testis cell aggregates that were first exposed to a designated growth factor: FGF2 at 1 µg/mL, FGF9 at 5 µg/mL, VEGF at 3.5 µg/mL, LIF at 5 µg/mL, SCF at 3.5 µg/mL, retinoic acid (RA) at 3.5 × 10 −5  M, or no growth factors (control). The newly developed seminiferous cords (SC) were classified based on their morphology into regular, irregular, enlarged, or aberrant. Certain treatments enhanced implant weight (LIF), implant cross-sectional area (SCF) or the relative cross-sectional area covered by SC within implants (FGF2). RA promoted the formation of enlarged SC and FGF2 led to the highest ratio of regular SC and the lowest ratio of aberrant SC. Rete testis-like structures appeared earlier in implants treated with FGF2, FGF9, or LIF. These results show that even brief pre-implantation exposure of testis cells to these growth factors can have profound effects on morphogenesis of testis cords using this implantation model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-022-03641-w