Classifying Antibodies Using Flow Cytometry Data: Class Prediction and Class Discovery

Classifying monoclonal antibodies, based on the similarity of their binding to the proteins (antigens) on the surface of blood cells, is essential for progress in immunology, hematology and clinical medicine. The collaborative efforts of researchers from many countries have led to the classification...

Full description

Saved in:
Bibliographic Details
Published in:Biometrical journal Vol. 47; no. 5; pp. 740 - 754
Main Authors: Salganik, M. P., Milford, E. L., Hardie, D. L., Shaw, S., Wand, M. P.
Format: Journal Article
Language:English
Published: Berlin WILEY-VCH Verlag 01-10-2005
WILEY‐VCH Verlag
Wiley-VCH
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classifying monoclonal antibodies, based on the similarity of their binding to the proteins (antigens) on the surface of blood cells, is essential for progress in immunology, hematology and clinical medicine. The collaborative efforts of researchers from many countries have led to the classification of thousands of antibodies into 247 clusters of differentiation (CD). Classification is based on flow cytometry and biochemical data. In preliminary classifications of antibodies based on flow cytometry data, the object requiring classification (an antibody) is described by a set of random samples from unknown densities of fluorescence intensity. An individual sample is collected in the experiment, where a population of cells of a certain type is stained by the identical fluorescently marked replicates of the antibody of interest. Samples are collected for multiple cell types. The classification problems of interest include identifying new CDs (class discovery or unsupervised learning) and assigning new antibodies to the known CD clusters (class prediction or supervised learning). These problems have attracted limited attention from statisticians. We recommend a novel approach to the classification process in which a computer algorithm suggests to the analyst the subset of the “most appropriate” classifications of an antibody in class prediction problems or the “most similar” pairs/groups of antibodies in class discovery problems. The suggested algorithm speeds up the analysis of a flow cytometry data by a factor 10–20. This allows the analyst to focus on the interpretation of the automatically suggested preliminary classification solutions and on planning the subsequent biochemical experiments. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Bibliography:istex:8FB76ADC5F288DD5230FFBC2D65A25DD6DCEF96B
ArticleID:BIMJ200310142
ark:/67375/WNG-1MS89JGD-X
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0323-3847
1521-4036
DOI:10.1002/bimj.200310142