Cellular Signal Transductions and Their Inhibitors Derived from Deep-Sea Organisms

Not only physiological phenomena but also pathological phenomena can now be explained by the change of signal transduction in the cells of specific tissues. Commonly used cellular signal transductions are limited. They consist of the protein-tyrosine kinase dependent or independent Ras-ERK pathway,...

Full description

Saved in:
Bibliographic Details
Published in:Marine drugs Vol. 19; no. 4; p. 205
Main Authors: Wang, Liyan, Umezawa, Kazuo
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 05-04-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Not only physiological phenomena but also pathological phenomena can now be explained by the change of signal transduction in the cells of specific tissues. Commonly used cellular signal transductions are limited. They consist of the protein-tyrosine kinase dependent or independent Ras-ERK pathway, and the PI3K-Akt, JAK-STAT, SMAD, and NF-κB-activation pathways. In addition, biodegradation systems, such as the ubiquitin-proteasome pathway and autophagy, are also important for physiological and pathological conditions. If we can control signaling for each by a low-molecular-weight agent, it would be possible to treat diseases in new ways. At present, such cell signaling inhibitors are mainly looked for in plants, soil microorganisms, and the chemical library. The screening of bioactive metabolites from deep-sea organisms should be valuable because of the high incidence of finding novel compounds. Although it is still an emerging field, there are many successful examples, with new cell signaling inhibitors. In this review, we would like to explain the current view of the cell signaling systems important in diseases, and show the inhibitors found from deep-sea organisms, with their structures and biological activities. These inhibitors are possible candidates for anti-inflammatory agents, modulators of metabolic syndromes, antimicrobial agents, and anticancer agents.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1660-3397
1660-3397
DOI:10.3390/md19040205