An active-fire based burned area mapping algorithm for the MODIS sensor
We present an automated method for mapping burned areas using 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery coupled with 1-km MODIS active fire observations. The algorithm applies dynamic thresholds to composite imagery generated from a burn-sensitive vegetation index and a mea...
Saved in:
Published in: | Remote sensing of environment Vol. 113; no. 2; pp. 408 - 420 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
Elsevier Inc
16-02-2009
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an automated method for mapping burned areas using 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery coupled with 1-km MODIS active fire observations. The algorithm applies dynamic thresholds to composite imagery generated from a burn-sensitive vegetation index and a measure of temporal texture. Cumulative active fire maps are used to guide the selection of burned and unburned training samples. An accuracy assessment for three geographically diverse regions (central Siberia, the western United States, and southern Africa) was performed using high resolution burned area maps derived from Landsat imagery. Mapped burned areas were accurate to within approximately 10% in all regions except the high-tree-cover sub-region of southern Africa, where the MODIS burn maps underestimated the area burned by 41%. We estimate the minimum detectable burn size for reliable detection by our algorithm to be on the order of 120 ha. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/j.rse.2008.10.006 |