New bead type and high symmetrical diallyl-POSS based emissive conjugated polyfluorene
A new bead type and diallyl-POSS based polyfluorene (P2) with high symmetrical structure was synthesized via Heck coupling reaction between oligomeric alkynyl fluorene (P1) and diallyl polyhedral oligomeric silsesquioxanes (diallyl-POSS). The molecular weight and the conjugated length of P1 and P2 w...
Saved in:
Published in: | Polymer (Guilford) Vol. 55; no. 26; pp. 6696 - 6707 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
15-12-2014
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new bead type and diallyl-POSS based polyfluorene (P2) with high symmetrical structure was synthesized via Heck coupling reaction between oligomeric alkynyl fluorene (P1) and diallyl polyhedral oligomeric silsesquioxanes (diallyl-POSS). The molecular weight and the conjugated length of P1 and P2 were well controlled to acquire good solubility and excellent optical property. The bead-type POSS based polymer was characterized by gel permeation chromatography (GPC), FT-IR, 1H NMR and photoluminescence (PL) spectra. High Resolution Transmission Electron Microscopy (HRTEM) micrographs showed that diallyl-POSS were uniformly nano-dispersed in the polymer matrix. Compared with P1, the POSS based polyfluorene P2 exhibited not only a higher thermal stability, but also an improved photophysical property in solution and solid states. The incorporation of diallyl-POSS resulted effectively in inhibiting the strong stacking/dipole–dipole interaction between fluorescent groups in the polyfluorene. The experimental results indicate that the bi-functional POSS based light-emitting polymers with high symmetrical structure can have great potential in optical materials and devices, such as OPV or PLED, etc.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2014.10.071 |