Different Size Formulations of Fluopyram: Preparation, Antifungal Activity, and Accumulation in the Fungal Pathogen Botrytis cinerea

Nanotechnology is revolutionizing the efficient production and sustainable development of modern agriculture. Understanding the pesticide activity of both nano- and conventional methods is useful for developing new pesticide formulations. In this study, three solid fluopyram formulations with varyin...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 28; no. 16; p. 6099
Main Authors: Wang, Yinmin, Zhang, Sida, Xu, Yong, Li, Haiyun, Zhang, Ruihua, Chen, Dong, Xu, Jianfu, Wu, Xuemin
Format: Journal Article
Language:English
Published: Basel MDPI AG 17-08-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanotechnology is revolutionizing the efficient production and sustainable development of modern agriculture. Understanding the pesticide activity of both nano- and conventional methods is useful for developing new pesticide formulations. In this study, three solid fluopyram formulations with varying particle sizes were developed, and the mechanisms underlying the difference in the antifungal activity among these formulations were investigated. Wet media milling combined with freeze drying was used to prepare fluopyram nanoparticles (FLU-NS) and a micron-sized solid formulation (FLU-MS), and a jet grinding mill was employed to fabricate fluopyram wettable powder (FLU-WP). The mean particle sizes of FLU-NS, FLU-MS, and FLU-WP were 366.8 nm, 2.99 μm, and 10.16 μm, respectively. Notably, FLU-NS displayed a toxicity index against Botrytis cinerea (gray mold) that was approximately double those of FLU-MS and FLU-WP. Similar trends were noticed in the antifungal tests on Alternaria solani. The uptake of FLU-NS by B. cinerea was approximately twice that of FLU-MS and FLU-WP, indicating that fluopyram nanoparticles are more easily taken up by the pathogen (B. cinerea), and display better bioactivity than the larger fluopyram particles. Therefore, the nanosizing of pesticides appears to be a viable strategy to enhance efficiency without increasing the amount of pesticide used.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28166099