A tourism dataset from historical transaction for recommender systems
The tourism industry has currently grown in various aspects, including the types of attractions, their quantity, and the number of tourist visits in various regions, contributing positively to both regional and global economies. Historical transactions are essential for developing recommender system...
Saved in:
Published in: | Data in brief Vol. 52; p. 109990 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Inc
01-02-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tourism industry has currently grown in various aspects, including the types of attractions, their quantity, and the number of tourist visits in various regions, contributing positively to both regional and global economies. Historical transactions are essential for developing recommender systems, utilizing techniques such as Collaborative Filtering and Demographic Filtering. TripAdvisor is a reputable website providing a wide range of accessible tourism information, including attractions, user profiles, and ratings. However, this unstructured raw data requires processing to create an adequate dataset for recommender systems. This study conducted a series of data processing steps on the raw data, including data restructuring, validation, content addition, integration with Google Maps, normalization, and modeling. This study successfully produced an original dataset comprising User Transaction, Item or Attraction, Attraction Type, Continent, Region, Country, City, and Visiting Mode. It also includes an entity relational model for tourism in Indonesia, particularly in Bali, Malang, and Yogyakarta regions, based on various global user experiences. This dataset is adequate and essential for developing various models of tourism recommender systems such as using Collaborative Filtering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2023.109990 |