Planar cell polarity signaling: the developing cell's compass
Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue grad...
Saved in:
Published in: | Cold Spring Harbor perspectives in biology Vol. 1; no. 3; p. a002964 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Cold Spring Harbor Laboratory Press
01-09-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1943-0264 1943-0264 |
DOI: | 10.1101/cshperspect.a002964 |