One Pot Synthesis of Graphene through Microwave Assisted Liquid Exfoliation of Graphite in Different Solvents

This study presents an easy and quick method for the synthesis of graphene from graphite in a set of solvents, including n-Hexadecane (n-Hexa), dimethylsulfoxide (DMSO), sodium hydroxide (NaOH), 1-octanol (OCTA), perchloric acid (PA), N,N-Dimethylformamide (DMF), ethylene glycol (EG), and ethylene d...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 27; no. 15; p. 5027
Main Authors: Gürünlü, Betül, Taşdelen-Yücedağ, Çiğdem, Bayramoğlu, Mahmut
Format: Journal Article
Language:English
Published: Basel MDPI AG 07-08-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents an easy and quick method for the synthesis of graphene from graphite in a set of solvents, including n-Hexadecane (n-Hexa), dimethylsulfoxide (DMSO), sodium hydroxide (NaOH), 1-octanol (OCTA), perchloric acid (PA), N,N-Dimethylformamide (DMF), ethylene glycol (EG), and ethylene diamine (ED), via microwave (MW) energy. The properties of final products were determined by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and the four-point probe technique. The XRD spectra of most of the MW-assisted graphene products showed peaks at 2θ = 26.5° and 54°. Layer numbers extend from 2 and 25, and the leading comes about were gotten by having two-layered products, named as graphene synthesized in dimethylsulfoxide (G-DMSO), graphene synthesized in ethylene glycol (G-EG), and graphene synthesized in 1-octanol (G-OCTA). G-DMF has the highest electrical conductivity with 22 S/m. The electrical conductivity is higher when the dipole moment of the used solvent is between 2 and 4 Debye (D). The FTIR spectra of most of the MW-assisted graphene products are in line with commercial graphene (CG). The UV-Vis spectra of all MW-assisted graphene products showed a peak at 223 nm referring to characteristic sp2 C=C bonds and 273 nm relating to the n → π * transition of C-O bonds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27155027