Targeting RNase L to Human Immunodeficiency Virus RNA with 2-5A-Antisense

In an attempt to develop a lead for the application of 2–5A-antisense to the targeted destruction of human immunodeficiency virus (HIV) RNA, specific target sequences within the HIV mRNAs were identified by analysis of the theoretical secondary structure. 2-5A-antisense chimeras were chosen against...

Full description

Saved in:
Bibliographic Details
Published in:Antiviral chemistry & chemotherapy Vol. 9; no. 3; pp. 225 - 231
Main Authors: Player, Maitra, RK, Silverman, RH, Torrence, PF
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01-05-1998
International Medical Press
Sage Publications Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In an attempt to develop a lead for the application of 2–5A-antisense to the targeted destruction of human immunodeficiency virus (HIV) RNA, specific target sequences within the HIV mRNAs were identified by analysis of the theoretical secondary structure. 2-5A-antisense chimeras were chosen against a total of 11 different sequences: three in the gag mRNA, three in the rev mRNA and five in the tat mRNA. 2-5A-antisense chimera synthesis was accomplished using solid-phase phosphoramidite chemistry. These chimeras were evaluated for their activity in a cell-free assay system using purified recombinant human RNase L to effect cleavage of 32P-labelled RNA transcripts of plasmids derived from HIV NL4-3. This screening revealed that of the three 2-5A-antisense chimeras targeted against gag mRNA, only one had significant HIV RNA cleavage activity, approximately10-fold-reduced compared to the parent 2-5A tetramer and comparable to that reported for the prototypical 2-5A-anti-PKR chimera, targeted against PKR mRNA. The cleavage activity of this chimera was specific, since a scrambled antisense domain chimera and a chimera without the key 5′-monophosphate moiety were both inactive. The 10 other 2-5A-antisense chimeras against tat and rev had significantly less activity. These results imply that HIV gag RNA, like PKR RNA and a model HIV tat-oligoA-vif RNA, can be cleaved using the 2-5A-antisense approach. The results further imply that not all regions of a potential RNA target are accessible to the 2-5A-antisense approach.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:2040-2066
0956-3202
2040-2066
DOI:10.1177/095632029800900303