Multi-UAV Reconnaissance Task Assignment for Heterogeneous Targets Based on Modified Symbiotic Organisms Search Algorithm

This paper considers a reconnaissance task assignment problem for multiple unmanned aerial vehicles (UAVs) with different sensor capacities. A modified Multi-Objective Symbiotic Organisms Search algorithm (MOSOS) is adopted to optimize UAVs' task sequence. A time-window based task model is buil...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 19; no. 3; p. 734
Main Authors: Chen, Hao-Xiang, Nan, Ying, Yang, Yi
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 12-02-2019
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers a reconnaissance task assignment problem for multiple unmanned aerial vehicles (UAVs) with different sensor capacities. A modified Multi-Objective Symbiotic Organisms Search algorithm (MOSOS) is adopted to optimize UAVs' task sequence. A time-window based task model is built for heterogeneous targets. Then, the basic task assignment problem is formulated as a Multiple Time-Window based Dubins Travelling Salesmen Problem (MTWDTSP). Double-chain encoding rules and several criteria are established for the task assignment problem under logical and physical constraints. Pareto dominance determination and global adaptive scaling factors is introduced to improve the performance of original MOSOS. Numerical simulation and Monte-Carlo simulation results for the task assignment problem are also presented in this paper, whereas comparisons with non-dominated sorting genetic algorithm (NSGA-II) and original MOSOS are made to verify the superiority of the proposed method. The simulation results demonstrate that modified SOS outperforms the original MOSOS and NSGA-II in terms of optimality and efficiency of the assignment results in MTWDTSP.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s19030734