Three-Dimensional Localization Algorithm Based on Improved A and DV-Hop Algorithms in Wireless Sensor Network
In the traditional wireless sensor networks (WSNs) localization algorithm based on the Internet of Things (IoT), the distance vector hop (DV-Hop) localization algorithm has the disadvantages of large deviation and low accuracy in three-dimensional (3D) space. Based on the 3DDV-Hop algorithm and comb...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 2; p. 448 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
10-01-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the traditional wireless sensor networks (WSNs) localization algorithm based on the Internet of Things (IoT), the distance vector hop (DV-Hop) localization algorithm has the disadvantages of large deviation and low accuracy in three-dimensional (3D) space. Based on the 3DDV-Hop algorithm and combined with the idea of A* algorithm, this paper proposes a wireless sensor network node location algorithm (MA*-3DDV-Hop) that integrates the improved A* algorithm and the 3DDV-Hop algorithm. In MA*-3DDV-Hop, firstly, the hop-count value of nodes is optimized and the error of average distance per hop is corrected. Then, the multi-objective optimization non dominated sorting genetic algorithm (NSGA-II) is adopted to optimize the coordinates locally. After selection, crossover, mutation, the Pareto optimal solution is obtained, which overcomes the problems of premature convergence and poor convergence of existing algorithms. Moreover, it reduces the error of coordinate calculation and raises the localization accuracy of wireless sensor network nodes. For three different multi-peak random scenes, simulation results show that MA*-3DDV-Hop algorithm has better robustness and higher localization accuracy than the 3DDV-Hop, PSO-3DDV-Hop, GA-3DDV-Hop, and N2-3DDV-Hop. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21020448 |