Plasma Total Antioxidant Capacity and Carbonylated Proteins Are Increased in Pregnant Women with Severe COVID-19

Oxidative stress (OS) induced by SARS-CoV-2 infection may play an important role in COVID-19 complications. However, information on oxidative damage in pregnant women with COVID-19 is limited. Objective: We aimed to compare lipid and protein oxidative damage and total antioxidant capacity (TAC) betw...

Full description

Saved in:
Bibliographic Details
Published in:Viruses Vol. 14; no. 4; p. 723
Main Authors: Solis-Paredes, Juan Mario, Montoya-Estrada, Araceli, Cruz-Rico, Adriana, Reyes-Muñoz, Enrique, Perez-Duran, Javier, Espino Y Sosa, Salvador, Garcia-Salgado, Victor Ranferi, Sevilla-Montoya, Rosalba, Martinez-Portilla, Raigam Jafet, Estrada-Gutierrez, Guadalupe, Gomez-Ruiz, Juan Alexander, Mateu-Rogell, Paloma, Villafan-Bernal, Jose Rafael, Rojas-Zepeda, Lourdes, Del Carmen Perez-Garcia, Maria, Torres-Torres, Johnatan
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 30-03-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress (OS) induced by SARS-CoV-2 infection may play an important role in COVID-19 complications. However, information on oxidative damage in pregnant women with COVID-19 is limited. Objective: We aimed to compare lipid and protein oxidative damage and total antioxidant capacity (TAC) between pregnant women with severe and non-severe COVID-19. Methods: We studied a consecutive prospective cohort of patients admitted to the obstetrics emergency department. All women positive for SARS-CoV-2 infection by reverse transcription-polymerase chain reaction (RT-qPCR) were included. Clinical data were collected and blood samples were obtained at hospital admission. Plasma OS markers, malondialdehyde (MDA), carbonylated proteins (CP), and TAC; angiogenic markers, fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF); and renin-angiotensin system (RAS) markers, angiotensin-converting enzyme 2 (ACE-2) and angiotensin-II (ANG-II) were measured. Correlation between OS, angiogenic, and RAS was evaluated. Results: In total, 57 pregnant women with COVID-19 were included, 17 (28.9%) of which had severe COVID-19; there were 3 (5.30%) maternal deaths. Pregnant women with severe COVID-19 had higher levels of carbonylated proteins (5782 pmol vs. 6651 pmol; p = 0.024) and total antioxidant capacity (40.1 pmol vs. 56.1 pmol; p = 0.001) than women with non-severe COVID-19. TAC was negatively correlated with ANG-II (p < 0.0001) and MDA levels (p < 0.0001) and positively with the sFlt-1/PlGF ratio (p = 0.027). Conclusions: In pregnant women, severe COVID-19 is associated with an increase in protein oxidative damage and total antioxidant capacity as a possible counterregulatory mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1999-4915
1999-4915
DOI:10.3390/v14040723