Processes for Designing Innovative Biomedical Hardware to Use In Space and on Earth
The new era of space exploration is increasing the astronaut's number and diversity in low orbit and beyond. The influx of such a diverse crew population will also increase the need for medical technologies to ensure safe and productive missions. Such a need represents a unique opportunity to i...
Saved in:
Published in: | IEEE open journal of engineering in medicine and biology Vol. 4; pp. 1 - 6 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-01-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The new era of space exploration is increasing the astronaut's number and diversity in low orbit and beyond. The influx of such a diverse crew population will also increase the need for medical technologies to ensure safe and productive missions. Such a need represents a unique opportunity to innovate and develop diagnostics and treatment tools to meet future needs. Historically, terrestrial regulatory oversight of biomedical design processes was considered separate from spaceflight regulatory processes because it did not address spaceflight constraints. These constraints challenge the creative development of unique solutions for use in space. Translation between healthcare innovation in spaceflight to healthcare on Earth and vice versa requires understanding the commonalities, unique needs and constraints. This manuscript provides a framework for comparing Earthspace design processes and a perspective on the best practices to improve healthcare equity and health outcomes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2644-1276 2644-1276 |
DOI: | 10.1109/OJEMB.2023.3270393 |