Monitoring the Growth of a Microbubble Generated Photothermally onto an Optical Fiber by Means Fabry-Perot Interferometry
In the present paper, we show the experimental measurement of the growth of a microbubble created on the tip of a single mode optical fiber, in which zinc nanoparticles were photodeposited on its core by using a single laser source to carry out both the generation of the microbubble by photothermal...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 2; p. 628 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
18-01-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, we show the experimental measurement of the growth of a microbubble created on the tip of a single mode optical fiber, in which zinc nanoparticles were photodeposited on its core by using a single laser source to carry out both the generation of the microbubble by photothermal effect and the monitoring of the microbubble diameter. The photodeposition technique, as well as the formation of the microbubble, was carried out by using a single-mode pigtailed laser diode with emission at a wavelength of 658 nm. The microbubble's growth was analyzed in the time domain by the analysis of the Fabry-Perot cavity, whose diameter was calculated with the number of interference fringes visualized in an oscilloscope. The results obtained with this technique were compared with images obtained from a CCD camera, in order to verify the diameter of the microbubble. Therefore, by counting the interference fringes, it was possible to quantify the temporal evolution of the microbubble. As a practical demonstration, we proposed a vibrometer sensor using microbubbles with sizes of 83 and 175 µm as a Fabry-Perot cavity; through the time period of a full oscillation cycle of an interferogram observed in the oscilloscope, it was possible to know the frequency vibration (500 and 1500 Hz) for a cuvette where the microbubble was created. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21020628 |