Observations of exponential wave attenuation in Antarctic sea ice during the PIPERS campaign
Quantifying the rate of wave attenuation in sea ice is key to understanding trends in the Antarctic marginal ice zone extent. However, a paucity of observations of waves in sea ice limits progress on this front. We deployed 14 waves-in-ice observation systems (WIIOS) on Antarctic sea ice during the...
Saved in:
Published in: | Annals of glaciology Vol. 61; no. 82; pp. 196 - 209 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cambridge, UK
Cambridge University Press
01-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantifying the rate of wave attenuation in sea ice is key to understanding trends in the Antarctic marginal ice zone extent. However, a paucity of observations of waves in sea ice limits progress on this front. We deployed 14 waves-in-ice observation systems (WIIOS) on Antarctic sea ice during the Polynyas, Ice Production, and seasonal Evolution in the Ross Sea expedition (PIPERS) in 2017. The WIIOS provide in situ measurement of surface wave characteristics. Two experiments were conducted, one while the ship was inbound and one outbound. The sea ice throughout the experiments generally consisted of pancake and young ice <0.5 m thick. The WIIOS survived a minimum of 4 d and a maximum of 6 weeks. Several large-wave events were captured, with the largest recorded significant wave height over 9 m. We find that the total wave energy measured by the WIIOS generally decays exponentially in the ice and the rate of decay depends on ice concentration. |
---|---|
ISSN: | 0260-3055 1727-5644 |
DOI: | 10.1017/aog.2020.36 |