MARCH1 E3 Ubiquitin Ligase Dampens the Innate Inflammatory Response by Modulating Monocyte Functions in Mice
Ubiquitination was recently identified as a central process in the pathogenesis and development of numerous inflammatory diseases, such as obesity, atherosclerosis, and asthma. Treatment with proteasomal inhibitors led to severe side effects because ubiquitination is heavily involved in a plethora o...
Saved in:
Published in: | The Journal of immunology (1950) Vol. 198; no. 2; pp. 852 - 861 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Association of Immunologists
15-01-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ubiquitination was recently identified as a central process in the pathogenesis and development of numerous inflammatory diseases, such as obesity, atherosclerosis, and asthma. Treatment with proteasomal inhibitors led to severe side effects because ubiquitination is heavily involved in a plethora of cellular functions. Thus, new players regulating ubiquitination processes must be identified to improve therapies for inflammatory diseases. In addition to their role in adaptive immunity, endosomal MHC class II (MHCII) molecules were shown to modulate innate immune responses by fine tuning the TLR4 signaling pathway. However, the role of MHCII ubiquitination by membrane associated ring-CH-type finger 1 (MARCH1) E3 ubiquitin ligase in this process remains to be assessed. In this article, we demonstrate that MARCH1 is a key inhibitor of innate inflammation in response to bacterial endotoxins. The higher mortality of March1
mice challenged with a lethal dose of LPS was associated with significantly stronger systemic production of proinflammatory cytokines and splenic NK cell activation; however, we did not find evidence that MARCH1 modulates LPS or IL-10 signaling pathways. Instead, the mechanism by which MARCH1 protects against endotoxic shock rests on its capacity to promote the transition of monocytes from Ly6C
to Ly6C
Moreover, in competitive bone marrow chimeras, March1
monocytes and polymorphonuclear neutrophils outcompeted wild-type cells with regard to bone marrow egress and homing to peripheral organs. We conclude that MARCH1 exerts MHCII-independent effects that regulate the innate arm of immunity. Thus, MARCH1 might represent a potential new target for emerging therapies based on ubiquitination reactions in inflammatory diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1601168 |