Crack-Insensitive Wearable Electronics Enabled Through High-Strength Kevlar Fabrics

Mechanical robustness is one of the key factors for future commercialization of wearable electronics. Wearable electronics are thin electronics constructed on flexible polymer or rubber substrates. Due to their thin geometry, wearable electronics are typically vulnerable under tearing or stretching,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on components, packaging, and manufacturing technology (2011) Vol. 5; no. 9; pp. 1230 - 1236
Main Authors: Gao, Yang, Sim, Kyoseung, Sun, Sicong, Chen, Zhou, Song, Jizhou, Yu, Cunjiang
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-09-2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanical robustness is one of the key factors for future commercialization of wearable electronics. Wearable electronics are thin electronics constructed on flexible polymer or rubber substrates. Due to their thin geometry, wearable electronics are typically vulnerable under tearing or stretching, especially when cracks exist. This paper presents the designs and manufacturing of crack-insensitive wearable electronics realized through incorporating high-strength Kevlar fabrics. Manufacturing strategies of transfer printing prefabricated electronics onto Kevlar fabric with adhesion layer and dip coating constructed devices have been illustrated. The device examples include ultrathin single-crystalline Si-based photodiodes, organic photodetectors, and carbon nanotube-based supercapacitors. Systematic studies highlight the fabrication procedures, mechanical characterization, and device performance evaluation, and offer practical routes to realize robust crack-insensitive wearable electronics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2156-3950
2156-3985
DOI:10.1109/TCPMT.2015.2429581