ATM plays antioxidant, boosting mitophagy via denitrosylation
Mitophagy is a selective process aimed at removing damaged or burned-out mitochondria; it is activated upon different stimuli and plays a fundamental role in preventing overproduction of reactive oxygen species (ROS) that might be generated by dysfunctional mitochondria. From this angle, mitophagy c...
Saved in:
Published in: | Autophagy Vol. 17; no. 2; pp. 590 - 592 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Taylor & Francis
01-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mitophagy is a selective process aimed at removing damaged or burned-out mitochondria; it is activated upon different stimuli and plays a fundamental role in preventing overproduction of reactive oxygen species (ROS) that might be generated by dysfunctional mitochondria. From this angle, mitophagy can be considered a fully-fledged antioxidant process. Such a surrogate antioxidant function is recently emerging, being shared among many molecular pathways and players that are usually not included among - and, formally, do not directly act as - antioxidants. ATM (ataxia telangiectasia mutated) is a prototype of this class of "neglected" antioxidants. In spite of its well-known role in DNA damage response, many phenotypes of ataxia telangiectasia (A-T) patients are, indeed, related to chronic oxidative stress, arguing for an additional antioxidant role of ATM. In a recent study, we discovered the mechanism through which ATM exerts antioxidant activity. In particular, we provided evidence that this involves ADH5/GSNOR (alcohol dehydrogenase 5 (class III), chi polypeptide), which, in turn, sustains mitophagy via PARK2 denitrosylation, and protects the cell from detrimental effects due to ROS. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1554-8627 1554-8635 |
DOI: | 10.1080/15548627.2020.1860490 |