Ultra-diluted gas transmittance revisited

The paper analyzes a model of optical transmittance of ultra-diluted gas, considering gas particles’ non-locality and the quantum effect of their wave function spreading derived from solving the Schrödinger equation for a free particle. The analysis does not depend on a particular form of the wave f...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; p. 19859
Main Author: Ratajczak, Jakub M.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 18-11-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper analyzes a model of optical transmittance of ultra-diluted gas, considering gas particles’ non-locality and the quantum effect of their wave function spreading derived from solving the Schrödinger equation for a free particle. The analysis does not depend on a particular form of the wave function, but it assumes the reality of wave function. Among others, we show conserved mass gas clouds may become significantly more transparent than predicted by classic transmittance laws. This unexpected phenomenon is possible because mass conservation is governed by the sum of probabilities, while the Markov chain’s product of probabilities controls the transmittance. Furthermore, we analytically derive the upper limit the closed system transmittance may grow and demonstrate a boundless, open gas cloud transmittance may grow up to 100%. Finally, we show the impact on interpretations of quantum mechanics. The model is naturally applicable in deep space conditions, where the environment is sparse. Furthermore, the model responds to dark matter requirements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-23657-0