Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier

The blood–brain barrier (BBB), comprised of brain endothelial cells with tight junctions (TJ) between them, regulates the extravasation of molecules and cells into and out of the central nervous system (CNS). Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release Vol. 217; pp. 113 - 120
Main Authors: Xiong, Xiaobing, Sun, Yao, Sattiraju, Anirudh, Jung, Youngkyoo, Mintz, Akiva, Hayasaka, Satoru, Li, King C.P.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 10-11-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The blood–brain barrier (BBB), comprised of brain endothelial cells with tight junctions (TJ) between them, regulates the extravasation of molecules and cells into and out of the central nervous system (CNS). Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of a broad range of brain disorders. Current strategies for BBB opening are invasive, not specific, and lack precise control over the site and timing of BBB opening, which may limit their clinical translation. In the present report, we describe a novel approach based on a combination of stem cell delivery, heat-inducible gene expression and mild heating with high-intensity focused ultrasound (HIFU) under MRI guidance to remotely permeabilize BBB. The permeabilization of the BBB will be controlled with, and limited to where selected pro-inflammatory factors will be secreted secondary to HIFU activation, which is in the vicinity of the engineered stem cells and consequently both the primary and secondary disease foci. This therapeutic platform thus represents a non-invasive way for BBB opening with unprecedented spatiotemporal precision, and if properly and specifically modified, can be clinically translated to facilitate delivery of different diagnostic and therapeutic agents which can have great impact in treatment of various disease processes in the central nervous system. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2015.08.044