PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning

Abstract Motivation Peptide is a promising candidate for therapeutic and diagnostic development due to its great physiological versatility and structural simplicity. Thus, identifying therapeutic peptides and investigating their properties are fundamentally important. As an inexpensive and fast appr...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics Vol. 36; no. 13; pp. 3982 - 3987
Main Authors: Zhang, Yu P, Zou, Quan
Format: Journal Article
Language:English
Published: England Oxford University Press 01-07-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation Peptide is a promising candidate for therapeutic and diagnostic development due to its great physiological versatility and structural simplicity. Thus, identifying therapeutic peptides and investigating their properties are fundamentally important. As an inexpensive and fast approach, machine learning-based predictors have shown their strength in therapeutic peptide identification due to excellences in massive data processing. To date, no reported therapeutic peptide predictor can perform high-quality generic prediction and informative physicochemical properties (IPPs) identification simultaneously. Results In this work, Physicochemical Property-based Therapeutic Peptide Predictor (PPTPP), a Random Forest-based prediction method was presented to address this issue. A novel feature encoding and learning scheme were initiated to produce and rank physicochemical property-related features. Besides being capable of predicting multiple therapeutics peptides with high comparability to established predictors, the presented method is also able to identify peptides’ informative IPP. Results presented in this work not only illustrated the soundness of its working capacity but also demonstrated its potential for investigating other therapeutic peptides. Availability and implementation https://github.com/YPZ858/PPTPP. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa275