Conditional Transgenic Mice for Studying the Role of the Glucocorticoid Receptor in the Renal Collecting Duct

The mineralocorticoid receptor (MR) is a major regulator of renal sodium reabsorption and body fluid homeostasis. However, little is known about glucocorticoid receptor (GR)-dependent renal effects. Glucocorticoids may activate both receptors, so it is difficult to distinguish between MR- and GR-med...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) Vol. 150; no. 5; pp. 2202 - 2210
Main Authors: Nguyen Dinh Cat, Aurélie, Ouvrard-Pascaud, Antoine, Tronche, François, Clemessy, Maud, Gonzalez-Nunez, Daniel, Farman, Nicolette, Jaisser, Frederic
Format: Journal Article
Language:English
Published: Chevy Chase, MD Endocrine Society 01-05-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mineralocorticoid receptor (MR) is a major regulator of renal sodium reabsorption and body fluid homeostasis. However, little is known about glucocorticoid receptor (GR)-dependent renal effects. Glucocorticoids may activate both receptors, so it is difficult to distinguish between MR- and GR-mediated effects in vivo. To overcome this complexity, we used a transgenic mouse model allowing conditional GR overexpression (doxycycline inducible TetON system, Hoxb7 promoter) in the renal collecting duct (CD) to identify GR-regulated genes involved in sodium transport in the CD. In microdissected cortical CD, induction of GR expression led (after 2 d of doxycycline) to increased α-epithelial sodium channel and glucocorticoid-induced leucine zipper and decreased abundance of with-no-lysine kinase 4 transcripts, without modification of Na,K-ATPase, serum- and glucocorticoid-kinase-1, or MR expression. No changes occurred in the upstream distal and connecting tubules [distal convoluted tubule (DCT), connecting tubule (CNT)]. Sodium excretion was unaltered, but the urinary aldosterone concentration was reduced, suggesting compensation of transitory extracellular volume expansion that subsequently disappeared. At steady state, i.e. after 15 d of doxycycline administration, transcript abundance remained altered in the CD, whereas mirror changes appeared in the DCT and CNT. Plasma aldosterone or glucocorticoids and blood pressure were all unaffected. These experiments show that: 1) GR, in addition to MR, controls epithelial sodium channel- and glucocorticoid-induced leucine zipper expression in vivo in the CD; 2) with-no-lysine kinase 4 is negatively controlled by GR; and 3) the DCT and CNT compensate for these alterations to maintain normal sodium reabsorption and blood pressure. These results suggest that enhanced GR expression may contribute to enhanced sodium retention in some pathological situations. Overexpression of glucocorticoid receptor in the renal collecting duct up-regulates sodium channel without alternating blood pressure because of compensatory changes occurring in distal tubule.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2008-1531