High-Demand Spinal Deformity With Multi-Rod Constructs and Porous Fusion/Fixation Implants: A Finite Element Study
Study Design Basic science (finite element analysis). Objectives Pedicle subtraction osteotomy (PSO) at L5 is an effective treatment for sagittal imbalance, especially in select cases of patients showing kyphosis with the apex at L4-L5 but has been scarcely investigated. The aim of this study was to...
Saved in:
Published in: | Global spine journal Vol. 14; no. 4; pp. 1328 - 1336 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Los Angeles, CA
SAGE Publications
01-05-2024
Sage Publications Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Study Design
Basic science (finite element analysis).
Objectives
Pedicle subtraction osteotomy (PSO) at L5 is an effective treatment for sagittal imbalance, especially in select cases of patients showing kyphosis with the apex at L4-L5 but has been scarcely investigated. The aim of this study was to simulate various “high-demand” instrumentation approaches, including varying numbers of rods and sacropelvic implants, for the stabilization of a PSO at L5.
Methods
A finite element model of T10-pelvis was modified to simulate posterior fixation with pedicle screws and rods from T10 to S1, alone or in combination with an L5 PSO. Five additional configurations were then created by employing rods and novel porous fusion/fixation implants across the sacroiliac joints, in varying numbers. All models were loaded using pure moments of 7.5 Nm in flexion-extension, lateral bending, and axial rotation.
Results
The osteotomy resulted in a general increase in motion and stresses in posterior rods and S1 pedicle screws. When the number of rods was varied, three- and four-rod configurations were effective in limiting the maximal rod stresses; values approached those of posterior fixation with no osteotomy. Maximum stresses in the accessory rods were similar to or less than those observed in the primary rods. Multiple sacropelvic implants were effective in reducing range of motion, particularly of the SIJ.
Conclusions
Multi-rod constructs and sacropelvic fixation generally reduced maximal implant stresses and motion in comparison with standard posterior fixation, suggesting a reduced risk of rod breakage and increased joint stability, respectively, when a high-demand construct is utilized for the correction of sagittal imbalance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2192-5682 2192-5690 |
DOI: | 10.1177/21925682221141874 |