Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer
Prostate cancer shows high expression of type I insulin-like growth factor (IGF-I) receptor (IGF-IR) and prostate stromal cells (PrSC) produce IGF-I. Although high plasma level of IGF-I is a risk factor of prostate cancer, the significance of the prostate stromal IGF-I in the regulation of prostate...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Vol. 66; no. 8; pp. 4419 - 4425 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia, PA
American Association for Cancer Research
15-04-2006
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prostate cancer shows high expression of type I insulin-like growth factor (IGF-I) receptor (IGF-IR) and prostate stromal cells (PrSC) produce IGF-I. Although high plasma level of IGF-I is a risk factor of prostate cancer, the significance of the prostate stromal IGF-I in the regulation of prostate cancer remains elusive. Here we show that the stromal IGF-I certainly regulates the development of prostate cancer. Coinoculation of PrSC increased the growth of human prostate cancer LNCaP and DU-145 tumors in severe combined immunodeficient mice. The conditioned medium of PrSC, as well as IGF-I, induced phosphorylation of IGF-IR and increased the growth of LNCaP and DU-145 cells. PrSC, but not LNCaP and DU-145 cells, secreted significant amounts of IGF-I. Coculture with PrSC increased the growth of DU-145 cells in vitro but the pretreatment of PrSC with small interfering RNA of IGF-I did not enhance it. Furthermore, various chemical inhibitors consisting of 79 compounds with approximately 60 different targets led to the finding that only IGF-IR inhibitor suppressed the PrSC-induced growth enhancement of DU-145 cells. Thus, these results show that the prostate stromal IGF-I mediates tumor-stromal cell interactions of prostate cancer to accelerate tumor growth, supporting the idea that the IGF-I signaling is a valuable target for the treatment of prostate cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-05-4239 |