β-Arrestin 1 is required for endothelin-1-induced NF-κB activation in ovarian cancer cells
In epithelial ovarian cancer (EOC), activation of endothelin-1 (ET-1)/endothelin A receptor (ETAR) signalling is linked to many tumor promoting effects, such as proliferation, angiogenesis, invasion and metastasis. These effects are dependent by the activation of critical signalling pathways, such a...
Saved in:
Published in: | Life sciences (1973) Vol. 118; no. 2; pp. 179 - 184 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Inc
24-11-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In epithelial ovarian cancer (EOC), activation of endothelin-1 (ET-1)/endothelin A receptor (ETAR) signalling is linked to many tumor promoting effects, such as proliferation, angiogenesis, invasion and metastasis. These effects are dependent by the activation of critical signalling pathways, such as MAPK, Akt, and β-catenin, through specific cytosolic and nuclear scaffolding functions of β-arrestin 1 (β-arr1). Here, we have assessed the potential role of ET-1/ETAR in promoting NF-κB signalling in EOC cells through β-arr-1 recruitment.
We used cultured HEY EOC cells cultured in the presence or absence of ET-1 and the ETAR antagonist BQ123. The phosphorylation of p65 and Iκ-Bα was evaluated by immunoblotting analysis. The interaction between p65 and β-arr1 was evaluated by immunoprecipitation experiments in nuclear extracts. NF-κB promoter activity was evaluated by transfection with NF-κB-driven luciferase reporter construct. Assessment of the function of β-arr1 was achieved by β-arr1 silencing with shRNA and expression of β-arr1-FLAG expression vector.
In EOC cells, ET-1 promotes the phosphorylation of p65 subunit and the cytoplasmic inhibitor IκB that in turn led to increased NF-κB transcriptional activity. These effects were inhibited by the use of BQ123, as well as by β-arr-1 silencing, suggesting that ET-1 through ETAR promotes the recruitment of β-arr1 to regulate NF-κB signalling. Moreover, the nuclear physical interaction between p65 and β-arr1 indicates a nuclear function of β-arr-1 in ETAR-driven NF-κB transcriptional activity.
Altogether these findings reveal a previously unrecognized pathway that depends on β-arr1 to sustain NF-κB signalling in response to ETAR activation in ovarian cancer.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2014.01.078 |