Multi-Interactions in Ionic Liquids for Natural Product Extraction
Natural products with a variety of pharmacological effects are important sources for commercial drugs, and it is very crucial to develop effective techniques to selectively extract and isolate bioactive natural components from the plants against the background of sustainable development. Ionic liqui...
Saved in:
Published in: | Molecules (Basel, Switzerland) Vol. 26; no. 1; p. 98 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI
28-12-2020
MDPI AG |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural products with a variety of pharmacological effects are important sources for commercial drugs, and it is very crucial to develop effective techniques to selectively extract and isolate bioactive natural components from the plants against the background of sustainable development. Ionic liquids (ILs) are a kind of designable material with unique physicochemical properties, including good thermal stability, negligible vapor pressure, good solvation ability, etc. ILs have already been used in pharmaceuticals for extraction, purification, drug delivery, etc. It has been reported that multi-interactions, like hydrogen bonding, hydrophobic interactions, play important roles in the extraction of bioactive components from the plants. In this review, recent progress in the understanding of scientific essence of hydrogen bonding, the special interaction, in ILs was summarized. The extraction of various natural products, one important area in pharmaceutical, by conventional and functional ILs as well as the specific roles of multi-interactions in this process were also reviewed. Moreover, problems existing in bioactive compound extraction by ILs and the future developing trends of this area are given, which might be helpful for scientists, especially beginners, in this field. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/MOLECULES26010098 |