Transformation Electromagnetics Devices Based on Printed-Circuit Tensor Impedance Surfaces
A method for designing transformation electromagnetics devices using tensor impedance surfaces is presented. The method is first applied to idealized tensor impedance boundary conditions (TIBCs), and later to printed-circuit tensor impedance surfaces (PCTISs). A PCTIS is a practical realization of a...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques Vol. 62; no. 5; pp. 1102 - 1111 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-05-2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method for designing transformation electromagnetics devices using tensor impedance surfaces is presented. The method is first applied to idealized tensor impedance boundary conditions (TIBCs), and later to printed-circuit tensor impedance surfaces (PCTISs). A PCTIS is a practical realization of a TIBC. It consists of a tensor impedance sheet, which models a subwavelength patterned metallic cladding, over a grounded dielectric substrate. The method outlined in this paper allows anisotropic TIBCs and PCTISs to be designed that support tangential wave vector distributions and power flow directions specified by a coordinate transformation. As an example, beam-shifting devices are designed, using TIBCs and PCTISs, that allow a surface wave to be shifted laterally. The designs are verified with a commercial full-wave electromagnetic solver. This work opens new opportunities for the design and implementation of anisotropic and inhomogeneous printed-circuit or graphene-based surfaces that can guide or radiate electromagnetic fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2014.2314440 |