Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway
The satiating potency of CCK has been well characterized, including its mediation by capsaicin-sensitive vagal primary afferents. We have previously shown that peripherally administered CCK activates the MAPK-signaling cascade in a population of nucleus of the solitary tract (NTS) neurons and that p...
Saved in:
Published in: | American journal of physiology. Regulatory, integrative and comparative physiology Vol. 296; no. 4; p. R845 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-04-2009
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The satiating potency of CCK has been well characterized, including its mediation by capsaicin-sensitive vagal primary afferents. We have previously shown that peripherally administered CCK activates the MAPK-signaling cascade in a population of nucleus of the solitary tract (NTS) neurons and that preventing ERK1/2 phosphorylation partly attenuates CCK's satiating potency. The aim of this study was to identify the neurochemical phenotypes of the NTS neurons that exhibit CCK-induced activation of ERK1/2. Using confocal microscopy, we demonstrate that intraperitoneal CCK administration increases the number of neurons that express phosphorylated ERK1/2 (pERK1/2) in the medial and commissural subnuclei of the NTS and that CCK-induced expression of ERK1/2 is increased in tyrosine hydroxylase-immunoreactive neurons. Using Western blot analysis, we show that the robust increase in tyrosine hydroxylase phosphorylation obtained with intraperitoneal CCK is significantly attenuated in rats pretreated with the ERK-pathway blocker U0126 injected into the 4th ventricle. In addition, CCK injections increased pERK1/2 expression in POMC neurons in the NTS. In contrast, only the rare GAD67, neuronal nitric oxide synthase, and leptin-responsive neuron exhibited CCK-induced pERK immunoreactivity. We conclude that activation of POMC-immunoreactive neurons and tyrosine hydroxylase activity via the ERK-signaling pathway in the NTS likely contributes to CCK's satiating effects. |
---|---|
ISSN: | 0363-6119 |
DOI: | 10.1152/ajpregu.90531.2008 |