Phosphorylation of atrial natriuretic peptides by cyclic AMP-dependent protein kinase

Atrial natriuretic peptides refer to a family of related peptides secreted by atria that appear to have an important role in the control of blood pressure. The structure of these peptides shows the amino acid sequence Arg101-Arg102-Ser103-Ser104, which is a typical recognition sequence (Arg-Arg-X-Se...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 261; no. 17; pp. 7607 - 7610
Main Authors: Rittenhouse, J, Moberly, L, O'Donnell, M E, Owen, N E, Marcus, F
Format: Journal Article
Language:English
Published: Bethesda, MD Elsevier Inc 15-06-1986
American Society for Biochemistry and Molecular Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atrial natriuretic peptides refer to a family of related peptides secreted by atria that appear to have an important role in the control of blood pressure. The structure of these peptides shows the amino acid sequence Arg101-Arg102-Ser103-Ser104, which is a typical recognition sequence (Arg-Arg-X-Ser) for phosphorylation by cyclic AMP-dependent protein kinase. With this background, we tested two synthetic atrial natriuretic peptides (Arg101-Tyr126 and Gly96-Tyr126) as substrates for in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. The tested atrial natriuretic peptides were found to be substrates for the reaction. Sequence studies demonstrated that the site of phosphorylation was located, as expected, at Ser104. Kinetic studies demonstrate that both atrial natriuretic peptides are excellent substrates for cyclic AMP-dependent protein kinase. In particular, the longer peptide Gly96-Tyr126 exhibited an apparent Km value of about 0.5 microM, to our knowledge the lowest reported Km for a cyclic AMP-dependent protein kinase substrate. Preliminary studies to measure the biological activity of the in vitro phosphorylated atrial peptides indicate that these compounds are more effective than the corresponding dephospho forms in stimulating Na/K/Cl cotransport in cultured vascular smooth muscle cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)57440-3